CONVERSATIONS ON SOCIAL ISSUES: CLIMATE CHANGE, GREEN JOBS, AND SOCIAL JUSTICE

Presented by:
Alison Pugh, Faculty, Sustainable Building Science Technology
Bachelor’s Program, South Seattle College

David Ernevad, Director Facilities Operations and Capital Projects,
Seattle Central College
THE POOR SHOULDER MORE OF THE BURDEN OF CLIMATE CHANGE

• 3 key takeaways from the Fourth National Climate Assessment. Climate change is*:
 • Expensive
 • Deadly
 • Extreme heat/cold events as well as deadly storms and general flooding/sea level rise
 • Air quality issues
 • Water/Food insecurity
 • Here, and we can still work on countering it
 • Limit to 1.5° C rise in temp. above pre-industrial levels
• And the poor are impacted proportionately more

*According to Vox, 3 big takeaways from the major new US climate report, by Umair Irfan
By 2030: Nationwide – 32% decrease in carbon emissions (below 2005 levels).
WA State goal – 37% decrease in carbon emissions (below 2012 levels).

Already legislation in place for greenhouse gas emission reductions (before clean power plan).

Overall for the state:
- By 2020: Reduce to 1990 levels
- By 2035: 25% reduction (below 1990 levels)
- By 2050: 50% reduction (below 1990 levels)

State agencies are REQUIRED (since 2009):
- By 2020: 20% reduction (below 2005 levels)
- By 2035: 36% reduction (below 2005 levels)
- By 2050: 57.5% reduction (below 2005 levels)

By 2030:
- Energy – 50% reduction (below national average)
- Water – 50% reduction (below 2030 District average)
- Transportation – 50% reduction (below 2030 District average)

City of Seattle goal - 58% reduction by 2030 to keep us on track to our ultimate goal of carbon neutrality by 2050.

• STARS Rating (AASHE) a measure of organizational excellence under the Seattle Colleges’ District Strategic Plan
• Sustainability Goals undergoing revision

The Big Picture
Seattle Colleges Sustainability Goals

Sustainability Instruction
- Goal 1: Identify sustainability related and focused courses in course catalogs and listing
- Goal 2: Increase number of sustainability focused courses 20% by 2020 compared to 2013 baseline
- Goal 3: All sustainability projects have a student learning component

Sustainable Operations
- Goal 1: Surpass greenhouse gas reduction targets provided by the State Agency Climate Leadership Act
- Goal 2: All new buildings will be constructed to at least a LEED Silver standard
- Goal 3: Compared to 2019, reduce garbage waste 50% by weight by 2030
- Goal 4: Meet Seattle 2030 District resource conservation targets
- Goal 6: Develop a District Purchasing Policy to purchase, when available:
 - GreenSeal or EcoLogo brand products
 - EPEAT Silver or higher certified electronics

Sustainability Engagement
- Goal 1: Maintain an active college-level Sustainability Committee on each campus to help enact the District Sustainability Plan
- Goal 2: Include a sustainability component into new student and new staff orientation
- Goal 3: Produce regular sustainability communications to the campus at large

Sustainability Planning
- Goal 1: Perform STARS Sustainability Assessment every 3 years with an increased score each submission
- Goal 2: Develop and maintain college-level Sustainability Action Plans
- Goal 3: Integrate sustainability goals into College and District Strategic Plans
ENERGY PERFORMANCE PROJECTS

• Meeting our needs today without compromising the needs of future generations

• Money
 • Energy projects come at high cost
 • Fuels, supply and demand
 • Simple payback and net present value
 • “low-hanging fruit”
 • The value now of future streams of money
FUNDING SOURCES

- State of Washington Capital Budget
 - State Board of Community and Technical Colleges filter/lens
- State of Washington Department of Commerce
 - Grants
 - Solar Grants and non-solar grants
 - Incremental grants
- Utilities e.g. Seattle City Light
 - Grants and incentives
 - Local commitments, Savings
SEATTLE CENTRAL STORY

- Steam and a transition to electricity and natural gas
 - GHG emissions and SCL
 - Managing costs
 - Electricity as fuel source is not adequate
 - Existing infrastructure limitation

- Energy Performance Contracting EPCO/ESCO
 - Alternative Public Works delivery methodologies RCW 39.10
 - Fee intensive, but open book collaborative process, guaranteed
 - Savings measured in kWh
PROJECT TARGETS

- Insulation
 - windows, walls, piping, air sealing
- Equipment controls
 - DDC/BAS, VFDs, analytics, commissioning
- Equipment replacement
 - boilers, air handlers, heat pumps, motors, fans
- Fixtures: lights, toilets, urinals
- Energy production
 - Solar, Kinetic, Cogeneration/Combined heat and power
2010 completion of first Energy project, the low hanging fruit

- **Scope**
 - HVAC controls, HVAC equipment, Boiler, lighting, skylights, insulation
- **Cost**
 - $3,544,042
- **Annual Energy Savings**
 - $198,345

2010 through 2016 ~$3.5m with $75k annual savings

GRITS
2018 ENERGY PROJECT

- **Scope (Facility Improvement measures)**
 - Heat pump
 - Duct Sealing, Envelop Sealing
 - LED lamps
 - Solar Panels: Our first energy production!
 - Several other non-energy saving items

- **Cost is $3.9m Energy Savings $82k**

- **Grants:**
 - Department of commerce
 - Non-solar grant $315k
 - Solar grant $204k
 - Seattle City Light
 - $200k solar grant
 - incentives
Table 4.3 - Cash Flow Analysis

Since the elevator FIM addition will not be financed, this table has not been updated to reflect the elevator.

Annual Cash Flow and Cumulative PV

Cash Flow Analysis

<table>
<thead>
<tr>
<th>Period</th>
<th>Recession</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>W2H Administered Solar Production Incentive</td>
<td>$306,103</td>
<td></td>
</tr>
<tr>
<td>Loan Payments</td>
<td>$45,763</td>
</tr>
<tr>
<td>Annual Electrical Utility Savings ($)</td>
<td>2.0%</td>
<td>$7,051</td>
</tr>
<tr>
<td>Subtotal Garage Utility Savings ($)</td>
<td>0.0%</td>
<td>$0</td>
</tr>
<tr>
<td>Annual HVAC Utility Savings ($)</td>
<td>2.0%</td>
<td>$45,541</td>
</tr>
<tr>
<td>Annual Water/Refriger Utility Savings ($)</td>
<td>3.5%</td>
<td>$0</td>
</tr>
<tr>
<td>Annual Other Utility Savings ($)</td>
<td>3.5%</td>
<td>$0</td>
</tr>
<tr>
<td>Annual Other Operational Savings ($)</td>
<td>$14,971</td>
</tr>
<tr>
<td>Annual Cash Flow ($)</td>
<td>$105,046</td>
</tr>
<tr>
<td>Cumulative PV ($)</td>
<td>$105,046</td>
<td>$210,092</td>
<td>$315,137</td>
<td>$416,183</td>
<td>$517,228</td>
<td>$618,273</td>
<td>$719,318</td>
<td>$820,363</td>
<td>$921,408</td>
<td>$1,022,453</td>
<td>$1,123,500</td>
</tr>
</tbody>
</table>

Financial Ratios

- **Equity:** $460,015
- **Net Long-Term Debt:** $306,103
- **Net Loss:** $53,912
- **Yearly Cash Flow:** $3,472
- **Yearly Net Margin:** 10.0%
- **Yearly Revenue:** $14,971
- **Yearly Interest Rate:** 20.0%
Environmental Impact Calculation

Seattle Colleges
Environmental Impact Calculator

<table>
<thead>
<tr>
<th>Non-Baseload</th>
<th>Load Factor to Use</th>
<th>lbf CO₂e/kWh (eGRID Subregion Electricity Emissions Factor)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NWPP</td>
<td>Select eGRID Subregion</td>
<td>1.53381</td>
</tr>
</tbody>
</table>

Amount Each Utility Type Will Be Reduced Per Year

<table>
<thead>
<tr>
<th>Electricity</th>
<th>kWh</th>
<th>lbf CO₂</th>
<th>Metric Tonnes CO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Gas</td>
<td>0</td>
<td>0 lbf CO₂</td>
<td>0.0 Metric Tonnes CO₂</td>
</tr>
<tr>
<td>Steam</td>
<td>959</td>
<td>187,276 lbf CO₂</td>
<td>84.9 Metric Tonnes CO₂</td>
</tr>
<tr>
<td>Fuel Oil</td>
<td>13</td>
<td>282 lbf CO₂</td>
<td>0.1 Metric Tonnes CO₂</td>
</tr>
<tr>
<td>Propane</td>
<td>0</td>
<td>0 lbf CO₂</td>
<td>0.0 Metric Tonnes CO₂</td>
</tr>
</tbody>
</table>

Total Reduction = 1,240,724 lbf CO₂ = 562.8 Metric Tonnes CO₂

This Annual Emissions Reduction Is Equivalent To The Following:

<table>
<thead>
<tr>
<th>Emissions Reduction</th>
<th>Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>108</td>
<td>Number of Vehicles Removed From Roads (Avg Size); or</td>
</tr>
<tr>
<td>2,102,922</td>
<td>Number of Miles Not Driven Per Year (Avg Size); or</td>
</tr>
<tr>
<td>15,509</td>
<td>Number of 75 Watt Light bulbs Not Energized; or</td>
</tr>
<tr>
<td>54</td>
<td>Number of Avg Sized Houses Removed From Power Grid; or</td>
</tr>
<tr>
<td>154</td>
<td>Acres of Trees Planted; or</td>
</tr>
<tr>
<td>579,778</td>
<td>Pounds of Coal Not Burned Per Year</td>
</tr>
</tbody>
</table>

Other Emissions Factors
- Natural Gas: 11.707 lbf CO₂ / Therm
- Steam: 195.3636 lbf CO₂ / Mlbs (Seattle Steam)
- Fuel Oil: 22.384 lbf CO₂ / gal
- Propane: 12.5 lbf CO₂ / gal

Conversion: 2,204,623 lbf CO₂ / Metric Tonnes CO₂

Equivalents Conversions
- Car Emissions: 11,470 lbf CO₂ / car / yr
- Tree Carbon Sequestration: 8,066 lbf CO₂ / acre / yr
- Vehicle Mileage Emissions: 0.39 lbf CO₂ / mile
- 75 W Light Bulb Emissions: 80 lbf CO₂ / Light Bulb / yr
- Tree Carbon Sequestration: 8,066 lbf CO₂ / acre / yr
- Coal Emissions: 2.14 lbf CO₂ / pound Coal
SOLAR PANELS
FUTURE PROJECTS

• Steam is our biggest cost and pollution risk.
• Electricity based heating and cooling is not adequate/technology does not exist
• Tune Ups

• Combined heat and power/Cogeneration
 • Produce steam and electricity using natural gas
 • Pros and cons e.g. heat dumping, GHG production
 • Solutions exist, absorption chillers, stack burners, expensive and high tech
STUDENT INVOLVEMENT

• Patience with projects and their inconveniences
• Internships
 • GRITS
 • HVAC Equipment preventive maintenance program
MY GREEN JOB

• Passion for smart construction, cold climate, frugality
 • Building enclosures
 • HVAC
 • Glazing
 • Energy Codes
 • Creative financing
 • Purpose
GREEN JOBS

- ANY JOB!
- Natural Sciences
- Social Sciences
- Food Systems/Ag/Farming/Urban Farming
- Planners/Designers
- Building Operators/Engineers/Mgmt/Energy (Demand)
- Energy (Supply)/Energy Trading/Storage
- Transportation
- Government
- Construction
- Manufacturing
- Water/Wastewater Treatment
- Materials Management/Recycling/Waste Reduction
- Marketing/Communications
- Sustainability Coordinators/managers/Directors/CSR
- Non-profits/Community organizations
PATHWAYS INTO GREEN JOBS

• **Seattle Central College**
 - **AA, AS, AB** (Associate of Arts, Associate of Science, Associate of Business)
 - AS Track 1 – Biological Sciences
 - AS Track 2 – Engineering, Computer Science, Physics, & Atmospheric Science
 - Emphasis – Equity & Social Justice, Global Health, Global Studies
 - **Sustainable Agriculture Education (SAgE)**
 - Bioregional Food Systems Emphasis for an AA or AS
 - Career Training Degrees: Culinary, Business Technology Mgmt., Creative Arts & Design, Education & Human Services, Healthcare, IT/Web/Programming, Maritime, Wood Technology
 - Many of these degrees now transfer → BAS Degrees (Bachelor’s of Applied Science)
 - Individual courses: ENVS, ANTH, ECON, HUM, SOC, HEA, BUS, CUL

• **South Seattle College**
 - **Apprenticeship** – 20 trades, earn while learning → Multi-Occupational Trades Associate’s
 - **Sustainable Building Science Technology BAS**
WHAT IS THE SUSTAINABLE BUILDING SCIENCE TECHNOLOGY BAS PROGRAM?

- Accessible and affordable way to make a difference
- 2-year cohort program confers a Bachelor of Applied Science (BAS) degree
- ~15 students per year
- Most students work full-time (4 Saturday classes per quarter)
- Combination of technical and business/management skills
- Graduates are qualified (with experience) to perform Seattle Building Tune-ups
- At least 2 years of related work experience (built environment, sustainability, volunteer, club)
- SBST Open House, Wed. March 20th, 5:30pm at South Seattle College, Georgetown Campus!
ALISON PUGH-
MY GREEN JOB

1994 B.A. in Art History from Mount Holyoke College (South Hadley, MA)
1996 – Mountain People’s Northwest (now UNFI)
2001 – Edmonds Community College
2008 M.B.A. in Sustainable Business from the Bainbridge Graduate Institute (now Presidio Graduate School)
2008 – Energy Management Director/Sustainability Researcher, Edmonds CC
2014 – NSF Grant Director, South Seattle College
2017 – Faculty, Sustainable Building Science Technology BAS
NEVER UNDERESTIMATE THE POWER OF A STUDENT

(Past) Edmonds CC Green Team

Campus Green Fund

stars, a program of aashe

Sustainability Fee
100 SOLUTIONS TO REVERSE GLOBAL WARMING

Search solutions by name or rank

#1 Best-Selling Environmental Book of 2017

ORDER THE BOOK

“...[T]he public is hungry for this kind of practical wisdom.”
— David Roberts, Vox

MORE REVIEWS
Summary of Solutions by Overall Rank

This table provides the detailed results of the Plausible Scenario, which models the growth solutions on the Drawdown list based on a reasonable, but vigorous rate from 2020-2050. Results depicted represent a comparison to a reference case that assumes 2014 levels of adoption continue in proportion to the growth in global markets.

NOTE: Energy Storage (utility-scale & distributed), Grid Flexibility, Microgrids, Net Zero Buildings, and Retrofiting were not modeled independently to avoid double counting impacts from other solutions.

<table>
<thead>
<tr>
<th>Rank</th>
<th>Solution</th>
<th>Sector</th>
<th>TOTAL ATMOSPHERIC CO2-EQ REDUCTION (Gt)</th>
<th>NET COST (BILLIONS US $)</th>
<th>SAVINGS (BILLIONS US $)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Refrigerant Mgmt</td>
<td>Materials</td>
<td>88.74</td>
<td>N/A</td>
<td>$902.77</td>
</tr>
<tr>
<td>2</td>
<td>Wind Turbines (Onshore)</td>
<td>Electricity Generation</td>
<td>84.60</td>
<td>$1,225.37</td>
<td>$7,425.00</td>
</tr>
<tr>
<td>3</td>
<td>Reduced Food Waste</td>
<td>Food</td>
<td>70.53</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>4</td>
<td>Plant-Rich Diet</td>
<td>Food</td>
<td>66.11</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>5</td>
<td>Tropical Forests</td>
<td>Land Use</td>
<td>61.23</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>6</td>
<td>Educating Girls</td>
<td>Women and Girls</td>
<td>51.48</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>7</td>
<td>Family Planning</td>
<td>Women and Girls</td>
<td>51.48</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>8</td>
<td>Solar Farms</td>
<td>Electricity Generation</td>
<td>36.90</td>
<td>$80.60</td>
<td>$5,023.84</td>
</tr>
<tr>
<td>9</td>
<td>Silvopasture</td>
<td>Food</td>
<td>31.19</td>
<td>$41.59</td>
<td>$699.37</td>
</tr>
<tr>
<td>10</td>
<td>Rooftop Solar</td>
<td>Electricity Generation</td>
<td>24.60</td>
<td>$453.14</td>
<td>$3,457.63</td>
</tr>
<tr>
<td>11</td>
<td>Regenerative Agr.</td>
<td>Food</td>
<td>23.15</td>
<td>$57.22</td>
<td>$1,528.10</td>
</tr>
<tr>
<td>12</td>
<td>Temperate Forests</td>
<td>Land Use</td>
<td>22.61</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>13</td>
<td>Peatlands</td>
<td>Land Use</td>
<td>21.57</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>14</td>
<td>Tropical Staple Trees</td>
<td>Food</td>
<td>20.19</td>
<td>$120.07</td>
<td>$626.97</td>
</tr>
<tr>
<td>15</td>
<td>Afforestation</td>
<td>Land Use</td>
<td>18.06</td>
<td>$29.44</td>
<td>$392.33</td>
</tr>
<tr>
<td>16</td>
<td>Conservation Agr.</td>
<td>Food</td>
<td>17.35</td>
<td>$37.53</td>
<td>$2,119.07</td>
</tr>
<tr>
<td>17</td>
<td>Tree Intercropping</td>
<td>Food</td>
<td>17.20</td>
<td>$146.99</td>
<td>$22.10</td>
</tr>
<tr>
<td>18</td>
<td>Geothermal</td>
<td>Electricity Generation</td>
<td>16.60</td>
<td>$-135.48</td>
<td>$1,024.34</td>
</tr>
<tr>
<td>19</td>
<td>Managed Grazing</td>
<td>Food</td>
<td>16.34</td>
<td>$50.48</td>
<td>$735.27</td>
</tr>
<tr>
<td>20</td>
<td>Nuclear</td>
<td>Electricity Generation</td>
<td>16.09</td>
<td>$0.88</td>
<td>$1,713.40</td>
</tr>
</tbody>
</table>
OTHER WAYS TO GET INVOLVED

• **Sustainability Council**
• **Student Clubs**
 • Lots of cultural clubs
 • Women in Science and Engineering
 • Mechanical Engineering Club
 • Woodworkers Advocating for Gender Equity
• **VOTE (local elections matter)**
 • City Community Meetings
 • Policy Input
 • Communicate with legislators (local, state, federal)
• **Community Orgs**
 • Sustainable Seattle (and by neighborhood), Transition Seattle, Got Green, Sustainable Communities All Over Puget Sound (SCALLOPS)
• **Industry Orgs.**
QUESTIONS

Thank you